星特朗[®] CELESTRON®

星特朗 © CELESTRON®

CPC、CPC HD 系列 说明书

杭州天文科技有限公司 地址: 浙江省杭州市拱墅区莫干山路 1418-32 号 网址: www.celestron.com.cn E-mail:market@celestron.com.cn 全国服务热线: 400-874-7878

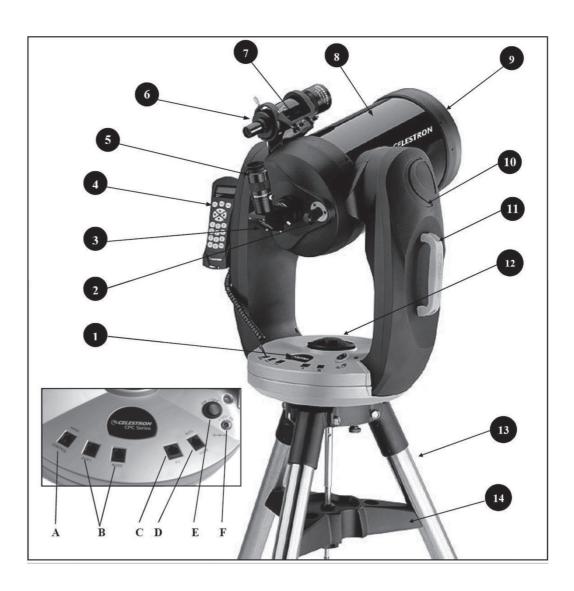
CE. CPC1. 2108. HT

目 录

CPC 结构图	01
组装	02
手控器	06
极轴校准 ·····	06
望远镜维护	07
附录 - 技术规格	09

简介

恭喜您购买了星特朗 CPC 天文望远镜! CPC GPS 引领了下一代计算机自动化望远镜。CPC 系列使用 GPS (全球卫星定位系统) 技术,找到天空中的天体,替代了您之前对天体的猜测和努力校准。板载 GPS 功能 的 CPC 系列望远镜,简单且易于使用,只要确定三个天体的位置即可开始使用。这个望远镜非常先进,一旦你开启了它,集成的 GPS 将自动指向您设定的精确坐标。您不需要输入日期、时间、经度和纬度甚至天空中某颗星的名字。


如果您刚入门,您也许想通过使用 CPC 望远镜内置的巡天功能(Sky Tour)开始,这能够驱动 CPC 找到天空中最有趣的天体以及自动转向它们。或者如果您比较有经验了,您将会感谢拥有超过 40,000 天体的综合数据库,包括所有深空天体、行星和亮的双星的自定义表单。无论您目前的天文观测水平的高低,CPC 系列望远镜都会向您和您的朋友展示宇宙中的奇妙景象。

数に

- 不要直接利用裸眼或者是通过天文望远镜直视太阳(除非您已经有适当的太阳滤光镜)。这将可能对您的眼睛造成永久且无法挽回的伤害。
- 任何时候都不能用望远镜把太阳投影到任何表面上。内部聚集的热量可能损坏望远镜或望远镜上的附件。
- 任何时候都不能使用目镜端太阳滤光镜或赫歇尔棱镜天顶。聚集在望远镜内部的热量可能导致这些设备出现裂缝或爆炸,使漏出的阳光直接照射到人眼。
- 任何时候都不能让望远镜处于无人管理的状态,或交给孩子以及不熟悉正确操作程序的成年人。

CPC 结构图

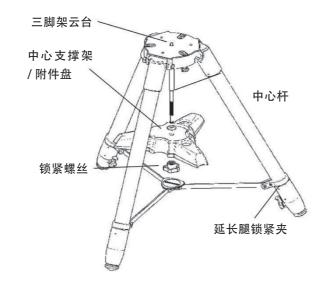
1	控制面板 (见下面)	8	主镜筒
2	调焦旋钮	9	施密特改正镜
3	天顶镜	10	叉臂
4	手控器	11	提手
5	目镜	12	赤经锁紧旋钮
6	寻星镜	13	三脚架
7	快速释放寻星镜支架	14	附件盘/中央支撑架
A	手控器接口	D	自动导星接口
В	辅助接口	Е	开关
С	电脑接口	F	12V 电源输入插孔

组 装

CPC 望远镜出厂已经预组装好,并且您在数分钟内就 能够投入使用。CPC 和它的附件被很方便地封装在一个可 重新利用的周转箱里, 而三脚架放在它自己的箱子里。望 远镜的附件如下:

- 目镜
- 天顶镜
- 50mm 寻星镜及其快速释放支架
- 目镜后背
- 车载电源线
- 重型三脚架

组装 CPC 望远镜


首先移除望远镜和三脚架外面的周转箱, 然后将三脚 架放置在坚固平整的地面上。搬动望远镜是通过同时握住 的高度, 步骤如下: 装有手控器一边的叉臂的下端和另一边的提手。将所有附 件从各自的盒子里取出。记住保留所有的盒子以便以后用 来运输用。在安装光学附件之前,望远镜应该军固地固定 在三脚架上,同时镜筒应该平行于地面。

安装三脚架

为获得最大的刚性,星特朗重型三脚架有一个架腿支 式观测而言,这不会造成问题。 撑架(同时又是附件盘)。这个支撑架与三脚架腿紧紧的 接合,增加稳定性同时减少震动和弯曲。然而,三脚架必 须与三脚架腿支撑架分开运输,所以三脚架是可以折叠起 加装天顶镜的目镜后面观测,此时的高度刚刚好。 来的。三脚架安装步骤:

- 1. 扶住三脚架,将它的云台部分朝上,腿指向地面。
- 2. 把三脚架腿从中心杆分离,直到它们不能再拉开。
- 3. 移除位于中心杆上的松紧螺栓。见右图。
- 支撑架边缘的三个杯状凹陷直接置于每条腿的下面。
- 5. 旋紧松紧螺栓直到支撑架和三脚架腿紧贴。请不要 过度旋紧。

现在三脚架可以自己站立了。一旦望远镜安装到三脚 架上,重新调整松紧螺栓,以确保三脚架腿支撑架是贴合 上的螺栓对齐。 的。再一次声明,请不要过度旋紧!

调节三脚架高度

您的 CPC 望远镜的三脚架是可调的。要想调节三脚架

- 1. 松开每条三脚架腿的延长腿锁紧夹(见上图)。
- 2. 拉长三脚架腿至需要的高度。
- 3. 旋紧延长腿锁紧夹固定三脚架腿。
- 4. 完成后重复这个过程以确保三脚架仍能保持水平。 当三脚架腿处于合拢状态时, 您可以做以上的事情。

请记住,三脚架腿拉得越长,稳定性越差。对于非正

然而,如果你计划摄影,三脚架应该尽量放得低些, 以确保稳定性。一个推荐的高度是, 坐着时能很舒服地在

把 CPC 安装到三脚架

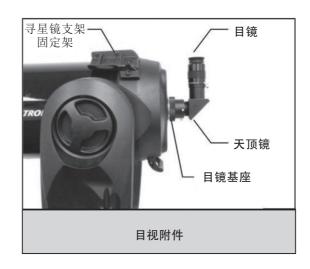
三脚架安装完后,现在您可以开始安装望远镜了。在 CPC 的基座底部有三个带螺纹的洞, 使得基座能够安装到 4. 将三脚架腿支撑架(附件盘)放在中心杆上,使得 三脚架云台上,另外有一个洞,安装在三脚架云台中心的 固定螺栓上。

- 1. 将望远镜基座底部的洞放置在三脚架云台的固定螺 栓上。
- 2. 旋转望远镜基座,直到底部的三个洞与三脚架云台
- 3. 旋转三颗基座螺栓,从三脚架云台底部一直到望远 镜基座的底部。旋紧三颗基座螺栓。

现在, 您可以在望远镜主镜筒上安装目视附件了。

离合器

CPC有一个双轴离合系统。这将允许您在望远镜没有 加电时,可以手动转动望远镜。然而,当望远镜要使用 "goto"功能校准时,则双离合器需要旋紧。任何手动移 动都会使望远镜的校准失效。


在安装您的目视附件之前,首先松开高度角锁紧螺栓 同时扶住望远镜主镜筒的尾端手柄。向上旋转镜筒直到和 地面水平, 然后锁紧螺栓。

儿松; 这将会减少蜗轮附件上的压力, 保护它们不受损害。

CPC 有一个高度角锁紧螺栓(下图)位于叉臂 上,一个方位角锁紧螺栓(上图)位于基座的 顶端。

安装目视后背

目视后背是把其他附件连接到望远镜上的附件。部分 镜筒出厂时已经安装好目视后背, 部分镜筒后面安装了一 **注意: 当运输您的望远镜时, 确保双离合器稍微有点** 个防尘盖。如果用户收到的镜筒未安装目视后背, 请按下 面的说明安装:

- 1. 移除镜筒后面的防尘盖。
- 2. 把目视后背上的滚花压环顺时针拧到镜筒后面的外 螺纹上。
- 3. 把目视后背上的固定螺丝转到一个舒适的位置,继 续顺时针转动滚花压环, 直到目视后背固定在镜筒后面。



目视后背固定后,用户可以安装其他附件,比如目镜,

移除目视后背, 只需要简单的逆时针转动滚花压环, 直到从镜筒后面完全脱离。

安装天顶镜

天顶镜是在光路把光线折到一个合适角度的部件, 这 样可以在一个比直视更舒服的位置进行观测。并且,天顶 镜可以转动,可以在不同位置观测。

1.25 寸天顶镜请按下面的说明安装:

- 1. 旋松目视后背上的锁紧螺丝, 使得它不进入调焦筒 的内径。
 - 2. 将天顶镜的银色金属部分插入目视后背。
 - 3. 适度拧紧锁紧螺丝, 使天顶镜固定。

如果您希望改变天顶镜的方向,请松开锁紧螺丝,这 样天顶镜就可以自由旋转。旋转到期望的位置之后,再拧 紧锁紧螺丝。

安装 2 寸 SCT 天顶镜, 请按下面的说明安装:

- 1. 移除镜筒后面的防尘盖或目视后背, 露出镜筒后面 的外螺纹。
- 2. 把天顶镜的滚花压环顺时针拧到镜筒后面的外螺纹 Ł.
- 3. 把天顶镜目镜接口转到一个合适的位置,继续顺时 针转动滚花压环, 直到天顶镜固定在镜筒后面。

移除天顶镜, 只需要简单的逆时针转动滚花压环, 直 到从镜筒后面完全脱离。

安装目镜

目镜是把物镜聚焦后的像放大的光学零件, 一般天文 目镜有 1.25 寸和 2 寸两种接口规格。

镜筒标配 1.25 寸天顶镜只能安装 1.25 寸目镜,如果 标配 SCT 天顶镜, 因为有一个 2 寸转 1.25 寸转接环, 可 以兼容两种目镜接口。

1.25 寸目镜请按下面的说明安装:

- 1. 松开目视后背或 1.25 寸天顶镜或 SCT 天顶镜转接 环上的锁紧螺丝, 使得它不会阻碍管筒的内径。
 - 2. 将目镜的银色金属部分插入。
 - 3. 适度拧紧锁紧螺丝,使目镜固定。

2 寸目镜请按下面的说明安装:

- 1. 确认镜筒已经安装好 SCT 天顶镜。
- 2. 松开外侧的 2 寸转 1.25 寸转接环固定螺丝, 移除 转接环。
 - 3. 将 2 寸目镜的银色金属部分插入。
 - 4. 适度拧紧锁紧螺丝,使目镜固定。

如需移除目镜,需要松开锁紧螺丝,将目镜拔出即可 每一个目镜的焦距都会标识在目镜镜筒上。焦距越长 (即数字越大),目镜的放大倍率越低:焦距越短(即数 字越小),放大倍率越高。通常,在观测时,您仅需要使 用低 - 中等倍率的目镜。

调焦

施密特-卡塞格林镜筒或 HD 型施密特-卡塞格林镜 筒调焦装置控制主镜移动调焦。调焦旋钮位于镜筒后面右 侧中间位置。旋转调焦旋钮直到成像清晰。如果调焦旋钮 无法转动, 那就是调焦装置的旋到了头。向反方向旋转调 焦旋钮直到成像清晰。 当某个成像清晰时, 顺时针转动旋 钮能使近一些的物体成像, 逆时针转动则能使远一些的物 体成像。调焦旋钮每转动一圈转动只移动主镜非常小的距 离,从近处调焦至无穷远则需要旋转很多圈(大约30圈)。

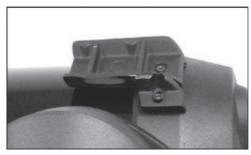
对于天文观测而言,如果星体不聚焦的成像是成发散 状的,很难看得清楚。如果您旋转调焦旋钮太快,会直接 跳过焦点而看不到清晰地图像。如若想要避免这种问题, 您的首个天文观测对象应该选较亮的天体(像月球或大行 星),这样当失焦时的成像也能够看到。

HD 型施密特 - 卡塞格林镜筒还有 2 个主镜锁, 与调焦 旋钮成120度,位于望远镜后面,见图。调焦前需要先松 开主镜锁, 逆时针转动主镜锁松开, 感觉松开即可, 不用 转很多圈。完成调焦后,顺时针转动主镜锁适度锁紧,可 以减少焦点漂移。

成像方向

镜筒成像方向取决与目镜如何安装。直接安装于目视 后背时,成倒像,上下左右都是反的。安装到标配天顶镜 上时,上下正,左右反,即镜像。

寻星籍

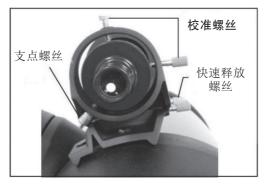

CPC 望远镜使用的是 9x50 的寻星镜。寻星镜标注的 规格是倍率和口径(mm)。所以,一个9x50的寻星镜能 将物体放大 9 倍, 口径是 50mm。

寻星镜的安装

寻星镜必须首先安装在快速释放架, 然后再安装到望

远镜的尾端。安装寻星镜步骤如下:

- 1. 将寻星镜支架固定架对准到寻星镜支架的尾部。松 开两个手拧螺丝,将寻星镜支架固定架插入寻星镜支架。
 - 2. 请找到在镜筒尾端的左边的两个小洞。
- 图。
 - 4. 旋上螺丝将寻星镜支架固定架固定在镜筒尾端。



寻星镜支架分为两个部分: 寻星镜支架固定 架(上), 寻星镜支架(下)。

警告:如果您移除了寻星镜支架固定架,请不要把望 远镜尾部的螺丝拧得太深。螺丝伸入太长可能会阻碍主镜 的移动甚至造成对主镜的破坏。

在安装完成支架后,您可以把寻星镜安装到支架上了。

- 1. 将 0 型橡胶环套在寻星镜的后部。
- 2. 将寻星镜目镜端从支架的前环(没有校准螺丝的环) 放入, 然后穿过后环。必须按下弹簧支点螺丝, 以便寻星 镜能够穿过后环(见下图)。
- 3. 将寻星镜往后推,直到0型环与支架的前环紧紧贴
 - 4. 手动旋紧两颗校准螺丝, 直到它们与寻星镜接触。

校准寻星镜

寻星镜的校准,依靠使用位于寻星镜支架的顶端和右 侧(从寻星镜目镜端往前看的方向)的两颗校准螺丝和一 颗弹性支点螺丝(位于支架的左边)。顶端的校准螺丝可 3. 将寻星镜支架固定架上的孔与两个小洞对准,见下 以调节寻星镜的上下,而右侧的校准螺丝可以调节寻星镜 的左右。弹性支点螺丝能够给予寻星镜恒定的压力以便校 准螺丝能够一直和寻星镜贴合。

> 要想使得校准过程变得容易些,您可以在白天的时候 进行,因为可以用望远镜很容易找到并确认目标。校正寻

- 1. 选择一个1英里(约1.6公里)以外的目标。这样 能消除望远镜主镜与寻星镜之间的视差现象。
- 2. 把目标放在主镜视场中央。您可以缓缓移动您的望 远镜使其位于视场中心。
 - 3. 锁紧方位角和高度角锁紧螺栓,以便固定望远镜。
 - 4. 检查寻星镜视场中目标的位置。
- 5. 调节寻星镜支架上的指旋螺丝。直到十字丝位于目 标中心。

通过寻星镜所观测到的成像的方向是反的(即,上下 倒像, 左右反向)。这对于大多数天文望远镜的寻星镜是 正常的。正因为此,您可能需要花费一段时间来熟悉调节 螺丝时寻星镜内物象的移动方向。

安装手控器

为了保护您的 CPC 望远镜在运输过程中不受损害,手 控器部件与望远镜的其他附件包裹在一起, 之后只要插在 传动基座上就可以了。手控器数据线是电话接头,并插入 位于传动基座上的指定接口。您的望远镜有一个手控器支 架,安装在叉臂上。安装手控器到叉臂的步骤:

05

- 将手控器支架放入叉臂侧面的槽中。
- 听到咔哒声表示连接吻合。

此时可将手控器放置在支架上。

启动 CPC

CPC 可以使用 12V 车载电源供电或者可选的供电装置 (见手册最后的"可选的配件"部分)。

- 入传动基座指定的 12V 电源插座中。
- 边, 按下"0n"。

-ON/OFF 开关 12V 输入插座

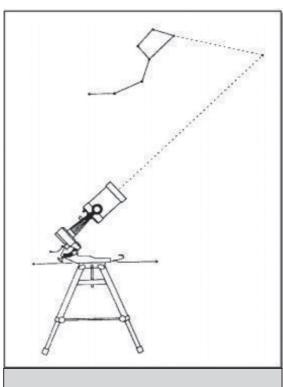
手控器

手控器操作详见手控器单独说明书。

GPS 说明:

CPC 使用的是内置 GPS 用来校准望远镜,在选择 其中一种校准模式之后,CPC自动开始内置的GPS模式, 但是, 您必须要有一些注意事项以便能最大化地利用 好 GPS 的许多功能:

当望远镜放置在无遮挡的开阔地时, GPS 才能正 常地校准。如果CPC被放置在一个周围视野有限制的 地方, 这将会使得望远镜花费很长的时间找寻和链接 所需要的卫星。


当第一次使用 GPS 时, CPC 将花费 3-5 分钟时间 和卫星链接。一旦望远镜成功链接,将望远镜电源一 直打开至少20分钟。在此期间,CPC将会下载GPS卫 星传来的完整的轨道参数年历(即星历表)。一旦接 收完此次信息,数据会被保存用于以后的校准。

如果你的 CPC 要长距离运输(就是说,从北半球 运到南半球),必须要花费长达一个小时的时间来建 立新坐标与卫星的链接。希望带着望远镜进行长途旅 行的观测者,我们建议您打开望远镜的电源,提前让 GPS 获取多需数据。

极轴校准(使用可选配件 -- 赤道仪楔)

尽管 CPC 系列天文望远镜可以通过经纬仪精确跟踪 一个天体, 但它仍然需要将您的望远镜的极轴(叉臂)校 1. 用车载电源启动 CPC,可以简单地把圆柱形插头插 准到与地球自转轴平行,以获得较长的天文摄影曝光时间。 为了精确校准极轴, CPC 需要一个放置于望远镜和三脚架 2. 按下电源开关启动 CPC, 开关位于 12V 电源插座旁 之间的赤道仪斜劈。电跟将使天文望远镜绕着天极转动, 与恒星同步。没有赤道仪斜劈, 你将会发现到目镜中的恒 星会围绕视场中心缓慢地旋转。尽管缓慢的旋转在目镜中 无法被察觉,但是在照片中会非常明显。

> 极轴校准是将您的天文望远镜的旋转轴(称为极轴) 校准到与地球自转轴平行的一种校准方法。 当校准完后, 带有转仪钟的天文望远镜将会跟踪星体在天空中运动。这 样被观测的天体将会始终静止在视场中(即它们不会移出 视场)。如果不用转仪钟,天空中的所有天体(白天或者 黑夜)将会慢慢移出视场。这个运动是由地球自转导致的。 转仪钟:驱动望远镜以天体周日运动的速度绕极轴旋转的 机械转动装置。

极轴校准示意图。主镜筒必须与叉臂平行, 赤道仪 斜劈必须对准北极星。

更精确的极轴校准请参见手控器说明书 "All-Star 极 轴校准"。

望远镜维护

当您的 CPC 望远镜需要简单的维护时,您需要记住 一些事情以确保您的望远镜保持的很好。每一种光学设计 类型的光轴准直都有相关特殊说明。

光学器件护理和清洁

有时候,灰尘和湿气会粘在望远镜的物镜、(折反镜的) 改正镜、(反射镜)的主镜上,这取决于您使用的是哪种 望远镜。在清洁望远镜上任何组件时,都需要特别小心, 以防损坏光学器件。

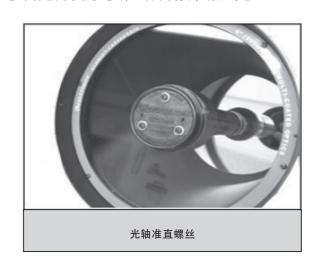
如果灰尘粘在光学器件上,用毛刷(骆驼毛制作而成) 或罐装压缩空气清除灰尘(以一个角度向镜头吹二到四秒 钟)。然后,使用光学清洁剂和白色纸巾清除残留的灰尘。 将清洁剂喷在纸巾上,然后用纸巾擦镜头。从透镜(或反 射镜)的中心到外围轻轻擦拭。

您可以使用量产的透镜清洁剂或你自己配制的清洁 剂。比较好的清洁剂是由异丙醇混合蒸馏水。清洁剂中异 丙醇占60%,蒸馏水占40%。或者使用一盘稀释的透明肥 皂水(一夸脱水和两三滴肥皂液)。

有时候, 在观测过程中, 您的望远镜的镜头可能会粘 有露水。如果您想要继续观测的话,必须将露水除掉,或 者使用电吹风(设臵在低档上),或者将望远镜指向地面 直到露水蒸发掉。

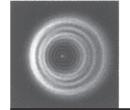
取下来。将望远境放在一个无尘的环境中,将其朝下放臵。 这样可以除掉望远镜镜筒里的湿气。

镜头盖都盖上。因为部件都不是密封的, 所以当不使用望 远镜时,应将开口盖上。这样可以阻止污染物进入望远镜。

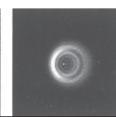

内部调整和清洁只能由星特朗维修部门来完成。如果 您的望远镜需要内部清理的话,请致电生产厂家获得认证 码和报价。

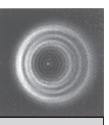
光轴准直

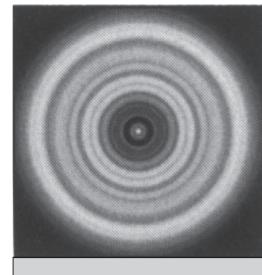
CPC 望远镜的光学性能与准直密切相关,也就是光学 系统的光轴准直。您的 CPC 望远镜在装配后出厂前已经准 直完成了。然而,如果在运输过程中望远镜受到猛烈震动, 它可能需要重新准直光轴。唯一可能需要进行准直的光学 元件是副镜。


为了检验您的天文望远镜的准直情况,您需要一个光 源。天顶附近的明亮的恒星就是一个理想的选择,因为那 里受大气折射造成的畸变最小。确保处于跟踪状态 (采用 可选的电跟),这样您就不需要手动跟踪这个星体。或者,

您如果不用电跟,您可以选择北极星。它和天极很近, 意味着它几乎很少移动, 故不需要手动跟踪它。


在开始准直之前,确保您的天文望远镜与周边环境达 如果湿气凝结在镜筒内部,请将所有附件从望远镜上 到热平衡。如果移动到温差很大的地方,请用 45 分钟时 间使望远镜达到热平衡。


为了验证准直,请观察位于天顶附近的恒星。使用焦 为了减少清洁望远镜的次数,请在用完之后把所有的 距在 12mm 到 6mm 的中到高倍目镜。判定准直情况时,很 重要的一点是要把星体置于视场中央。慢慢往里或往外转 动调焦轮, 判断恒星的像的对称性。如果您发现像往一边 偏移, 那么您需要重新准直。



即使在焦内和焦外的恒星像看起来是一样的, 但它们是不对称的, 黑色的部分向衍射图案左边偏斜, 说明光轴没有准直。

为了完成上面这个,您需要拧紧副镜的准直螺丝,使 得恒星从向偏斜方向移动。这些螺丝位于副镜框架的面板 上。只要将准直螺丝小转 1/6 到 1/8 圈,并在做更进一步 的校正前,移动望远镜将恒星重新置于视场中央。

准直光轴的简单过程,请遵循以下步骤:

- 1. 当通过中倍或高倍目镜观测时, 使亮星散焦, 直到 有黑色阴影的圆环图案出现(见图 9-2)。将散焦的恒星 置于中央,并注意中央阴影偏向哪方。
- 2. 将您的手指放在望远镜前端部件的边缘(小心不要 碰到改正镜片),指向准直螺丝。往目镜里观测的时候能 够看到您手指的阴影。绕着镜筒边缘转动您的手指直到阴 影看上去与环上最窄的部分最接近(即,与中央阴影偏斜 方向一致)。
- 3. 确定离您手指最近的准直螺丝。这是您首先要准直 的准直螺丝。(如果您的手指正好放在两颗准直螺丝之间, 那么您需要调整位于您手指相反方向的准直螺丝。
- 4. 用手控器上的按钮将散焦恒星的像移动至视场的边 缘,与中央恒星的像的偏离方向相同。
- 5. 用目镜进行观测时,用通用扳手来转动步骤2和3 中您固定的准直螺丝。通常转动十次您就能看到准直的变 化。如果星体移出了视场:与中央阴影偏移方向一致,那 称的恒星像。另外,完美的光轴准直会展现望远镜所要设 说明您朝反方向转动了准直螺丝。将螺丝钉朝反方向拧, 这样星体影像将会向视场中央移动。
- 两个螺丝也转动相应的量拧紧。相反的,如果准直螺丝转 得太紧, 那么将另外两个螺丝拧松。
- 7. 当恒星的像出现在视场中央时,检查衍射环是否是 同心圆。如果中央遮挡仍然朝同一个方向偏离,那么继续 朝同一个方向旋转螺丝。如果您发现衍射环向不同的方向 偏离,那么就朝新的方向简单重复步骤2到步骤6。

一个已准直的望远镜应该显示出对称的环状图 案,在这里类似于衍射图案。

完美的光轴准直将会展现出无论是清晰还是失焦都对 计达到的最理想的光学性能。

如果视宁度不好,将会很难进行准直,最好等到一个 6. 如果在转动过程中,发现螺丝非常松,那么将另外 更好的晚上以看到一个稳定的天空。天空中较稳定的区域 能够通过恒星是静止还是闪烁来判断。

附录 - 技术规格

编号	11073	11074	11075	11007	11008	11009		
名称	CPC800	CPC925	CPC1100	CPC800HD	CPC925HD	CPC1100HD		
光学设计	施密特 - 卡塞格林式			EdgeHD				
口径(毫米)	203	235	280	203	235	2800		
焦距(毫米)	2000	2350	2800	2000	2350	2800		
焦比	f/10	f/10	f/10	f/10	f/10	f/10		
镀膜	StarBright XLT 镀膜							
目镜	40mm				2″82° 23mm			
寻星镜	9X50							
天顶镜	1. 25"				2"			
极限星等	14	14. 4	14.7	14	14. 4	14.7		
聚光力(相对于人眼)	843 倍	1127 倍	1600 倍	843 倍	1127 倍	1600 倍		
副镜遮挡 (mm)	64	85	95	64	85	95		
托架	双叉臂							
附件盘	压铸铝(带架腿支撑和目镜孔)							
三脚架	高度可调重型不锈钢脚架							
GPS	内置 16 通道							
手控器	电脑化可升级,双排 16 字符 LCD 显示器,19 光纤背光照明							
数据库	4万以上目标,100个用户自定义目标,200个目标增强信息							
回转速率	九种转速							
跟踪速率	恒星速,太阳速,月球速							
跟踪模式	经纬仪,赤道仪(北半球),赤道仪(南半球)							
校准模式	天空校准,自动两星校准,两星校准,太阳系天体校准,							
汉作沃八	赤道仪北半球校准,赤道仪南半球校准,一星校准							
周期误差校正	永久性 PPEC							
电力需求	12V5A							